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Abstract— We propose ActiveSplat, an autonomous high-
fidelity reconstruction system leveraging Gaussian splatting.
Taking advantage of efficient and realistic rendering, the system
establishes a unified framework for online mapping, viewpoint
selection, and path planning. The key to ActiveSplat is a hybrid
map representation that integrates both dense information
about the environment and a sparse abstraction of the
workspace. Therefore, the system leverages sparse topology for
efficient viewpoint sampling and path planning, while exploiting
view-dependent dense prediction for viewpoint selection,
facilitating efficient decision-making with promising accuracy
and completeness. A hierarchical planning strategy based on
the topological map is adopted to mitigate repetitive trajectories
and improve local granularity given limited budgets, ensuring
high-fidelity reconstruction with photorealistic view synthesis.
Extensive experiments and ablation studies validate the
efficacy of the proposed method in terms of reconstruction
accuracy, data coverage, and exploration efficiency. Project
page: https://li-yuetao.github.io/ActiveSplat/.

I. INTRODUCTION

Fine-grained reconstruction of three-dimensional
environments has long been a central research focus
in robotics, computer vision, and computer graphics. Within
the robotics community, there is a growing demand for
high-fidelity digitization of the physical world, not only to
facilitate immersive applications like teleoperation [1] but
also to narrow the sim-to-real gap, advancing generalizable
robot autonomy through photo-realistic simulation [2].

Recent progress in differentiable rendering has
significantly improved the quality of reconstructed
environments. Neural Radiance Fields (NeRF) [3] and
its variants [4], [5], [6] leverage neural networks as compact
scene representations, using volume rendering to synthesize
high-quality novel views. However, the computational
inefficiencies caused by volume integration along rays pose
challenges in terms of memory and processing. To address
these limitations, Gaussian splatting [7], [8], [9], [10], [11]
has been introduced, enabling efficient rasterization and
achieving promising rendering quality through α-blending.
Despite these advances, scene-specific representations
and data-dependent optimization make these methods
highly sensitive to the captured observations, where noise
and artifacts can easily emerge due to insufficient view
coverage, especially without direct feedback during data
collection [12], [13].
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Fig. 1: The agent explores the environment autonomously to build a
3D map on the fly. The integration of a Gaussian map and a Voronoi
graph assures efficient and complete exploration with high-fidelity
reconstruction results.

In this work, we aim to address these issues through active
mapping, where a mobile agent reconstructs the environment
on the fly, assesses the instant quality of the map, and
plans its path to cover the entire environment. We find
Gaussian splatting to be particularly suitable for high-fidelity
active mapping, owing to its capability for view-dependent
dense predictions. This characteristic enables the system to
efficiently and accurately extract both working space and
obstacles while also quantifying data coverage in a unified
manner by splatting Gaussians of interest onto the actively
sampled views. The proposed system, dubbed ActiveSplat,
incrementally updates a renderable Gaussian map through
gradient-based optimization, progressively refining and
completing the scene representation with high fidelity.

To balance reconstruction accuracy and exploration
efficiency, our system adopts a hybrid map representation
inspired by [14]. A set of 3D Gaussians is maintained as
a dense map to provide view-dependent dense predictions,
while a Voronoi graph is extracted as a topological map to
represent the abstraction of the working space. Sparse yet
representative view positions are derived from this graph,
guiding the agent to extend the boundaries of the working
space. Meanwhile, the viewing orientation at each position is
determined by view-dependent completeness measures. This
approach reduces the infinite number of possible viewpoints
in free space to a manageable set of positions and rotation
angles, ensuring efficient and safe traversal. Additionally,
a hierarchical planning strategy based on the topological
map is employed to reduce redundant trajectories during
global exploration and improve the overall efficiency of the
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autonomy process. The key contributions of the paper can
then be categorized as follows:

• A novel system that actively splats Gaussians of
interest to build a unified, autonomous, and high-fidelity
reconstruction system.

• A hybrid map representation combining dense
predictions of Gaussians and sparse abstraction of
Voronoi graph for comprehensive viewpoint selection
and safe path planning.

• A hierarchical planning strategy based on the Voronoi
graph prioritizes local areas to minimize redundant
exploration, decoupling viewpoint selection to balance
exploration efficiency and reconstruction accuracy.

II. RELATED WORK

A. Autonomous exploration

Autonomous exploration aims to best acquire observations
to cover the entire space with limited steps. Existing
strategies can be broadly categorized as frontier-based
methods and sampling-based methods. Frontier-based
methods [15], [16] focus on expanding the exploration
area by navigating to the boundary between explored and
unexplored regions until full coverage is achieved. However,
these methods rely on the discrete grid representation
to discern the decision boundary, thus lacking adaptive
granularity given diverse geometry complexity. In contrast,
sampling-based methods [17], [18], [14] sample candidate
viewpoints and prioritize those that maximize uncertainty
reduction or expected information gain, thus improving
scene coverage by reducing environmental uncertainty.
Efforts are made to design proper sampling strategies for
efficiency and precise scoring techniques given the samples.
TARE [19] introduces a hierarchical strategy for LiDAR-
based exploration, where local subspace is traversed at a
fine-grained level while global target goals at a coase level
are maintained, thus achieving a balance between exploration
efficiency and mapping completeness. Similarly, [20] adopts
a fine-grained Next-best-view planning for local exploration,
while leveraging frontier-based strategies for global
coverage. Most relevant to ours is [14] which also leverages
a hybrid representation containing a dense neural map
and a topology map for exploration. However, the neural
map suffers from slow convergence and provides a coarse
and cumbersome assessment of reconstruction quality. We,
on the other hand, leverage the efficient optimization and
rendering of 3DGS to achieve autonomous reconstruction
in high fidelity.

B. High-fidelity scene reconstruction

Recent progress in differentiable rendering attracts
significant attention in the research community.
Parameterized by implicit NeRF [3], [4], [5], [6]
representations or explicit 2D/3D Gaussian [7], [8],
[9], [10], [11] representations, photo-realistic images of
novel views can be rendered with promising efficiency. The
gradient-based optimization has also been applied in an
online setting to incrementally update the neural map [21],

[22], [23], [24], [25] or the Gaussian parameters [26],
[27], [28], [29] through differentiable rendering. Recently,
continual learning of the neural map has turned into an
active fashion through uncertainty-guided autonomous
exploration [18], [14], [30], [31], [32]. However, the
computationally expensive training process forces the map
to balance between accuracy and convergence efficiency
with different network architectures. We adopt a set of
Gaussian primitives as the scene representation that allows
consistent optimization in an online updating or offline
post-processing setting. Relevant work includes a safe
navigation system [33] builds upon FisherRF [34] that
utilizes Fisher information for quantifying the uncertainty
of Gaussians, and GS-Planner [35], an active mapping
system using the Gaussian splatting technique. The major
differences lie in our hybrid map representation that allows
safe and hierarchical path planning with thorough data
acquisition.

III. METHODOLOGY

The overview of our ActiveSplat system is illustrated in
Fig. 2, where Gaussians of interest are splatted onto the
image plane as a consistent technique utilized for online map
updating, viewpoint selection, and path planning.

A. Hybrid map updating

Central to the proposed ActiveSplat system is a hybrid
map representation containing both Gaussian primitives that
allow dense prediction and a topological structure that
provides sparse abstraction of the workspace. Gaussian
primitive is an explicit representation parameterized by color
c, center position µ, anisotropic covariance Σ, and opacity
o, where the influence of each Gaussian can be expressed as:

f(x) = o · exp
(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
. (1)

The view synthesis can then be implemented through
splatting given the Gaussian map and a camera pose T ,
where the color of each pixel u is linearly affected by the
projected 3D Gaussians as:

Ĉk =

n∑
i=1

cifi(uk)

i−1∏
j=1

(1− fj(uk)) . (2)

Similarly, the differentiable rendering can also be applied
for depth and visibility (accumulated opacity) estimation:

D̂k =

n∑
i=1

difi(uk)

i−1∏
j=1

(1− fj(uk)) , (3)

Ôk =

n∑
i=1

fi(uk)

i−1∏
j=1

(1− fj(uk)) , (4)

where di is the depth of the Gaussian center in the camera
coordinate

The optimization of the Gaussian map is performed given
photometric and geometric losses defined in [26]:

Lpho = λ1

∣∣∣Ck − Ĉk

∣∣∣+ λ2

(
1− SSIM(Ck, Ĉk)

)
, (5)
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Fig. 2: Overview of ActiveSplat: The autonomous reconstruction system employs a hybrid map that incorporates both dense predictions
and sparse topological abstractions, balancing exploration efficiency with reconstruction accuracy. Splatting Gaussians of interest on the
fly forms a consistent manner for online map updating, viewpoint selection, and path planning. Note: Subregions are distinguished by
node color, with node scores indicated by color intensity.

Lgeo = |Dk − D̂k|, (6)

L = wcLpho + wdLgeo, (7)

where λ1 = 0.8, λ2 = 0.2, wc = 0.5.wd = 1.0, Ck and Dk

are the captured RGB-D images.
During the online mapping process, new Gaussians will

be dynamically initialized to cover newly observed areas,
and redundant Gaussians with near-zero opacity or large
covariances will be removed as [7]. We follow [26] to define
newly observed areas as a view-dependent binary mask with
small accumulated opacity or incoming geometry in front of
the maintained map:

Mk = (Ok < τo) ∨
(
(Dk < D̂k) ∧ (|Dk − D̂k| > ϵMDE)

)
,

(8)
where τo = 0.98, ϵMDE equals 50 times median depth error.

The dense prediction of the Gaussian map allows
convenient extraction of the workspace and the obstacles.
As illustrated in Fig. 3, the top-down view can be efficiently
rendered given a large focal length as the orthographic
projection of the dense map. The region with sufficient
accumulated opacity is taken as occupied, where occupied
areas above the ground indicate the obstacles. Navigable
workspace can then be extracted as occupied areas near
the ground excluding the obstacles. An undirected Voronoi
graph G = {V, E} can then be extracted through Voronoi
tessellation [36] to obtain edges E equidistant to obstacles
and nodes N as intersections where the edges E terminate.

The Gaussian map and the Voronoi graph are
complementary: Gaussian map provides dense and complete
information about past experience, while the Voronoi graph
offers a sparse structure of the workspace. We will show as

Topdown view

occupied areas

working space

obstacles

Voronoi graph

Fig. 3: The extraction of the Voronoi graph.

follows that the integration of the two formats leads to an
adaptive granularity of the environment and guarantees a
nice trade-off between efficiency and accuracy during the
autonomous reconstruction process.

B. Active viewpoint selection

The objective of active mapping is to traverse the
workspace and best capture the information of previously
unseen areas. This is usually achieved by iteratively selecting
target views, where the sampling strategy of accessible
viewpoint candidates and the selection criteria are vital to
efficiency and overall coverage. One nice property of Voronoi
graph is that it can be seen as a strong deformation retract of
the global free space [37]. Besides, Voronoi graph generates
a path that stays as far away from the obstacles as possible,



thus guaranteeing a safe traversal. Consequently, we wish
to sample viewpoints on the Voronoi graph to maintain a
compact and accessible set that covers the entire scene.

a) Decoupled position and rotation candidates: To best
exploit the compact structure of the Voronoi graph along
with the rich information inherited in the Gaussian map,
we propose to decouple the position and rotation candidates
to enforce sparsity while maintaining thorough observations.
The dynamically updated workspace leads to an incremental-
augmented graph that completely describes the partially-
observed workspace. We iteratively select the Voronoi node
as viewpoint position candidates, where the node with the
most information gain pushes the boundary of the workspace
for traversal. Regarding the view rotation, we adopt the yaw
and pitch rotations at the selected view positions to get
the observation toward a specific region. The target node
position and the target rotation angle are determined in a
view-dependent manner as follows.

b) Coverage evaluation: The actions regarding
translation and rotation during the autonomous exploration
process undergo different granularity. We aim to efficiently
traverse the entire set of Voronoi nodes to maintain complete
coverage, while conducting careful inspection in an area
with intricate intersections of paths. In practice, we render
panoptic images regarding the visibility at all nodes as
illustrated in Fig. 2, and cluster the low-visibility areas
through DBSCAN algorithm [38] for generating rotation
angle candidates. Note that the view-dependent accumulated
opacity does not precisely reflect the reconstruction accuracy
of the entire space. Firstly, the proportion of low-visibility
areas in the image domain does not reflect the actual unseen
space in three dimensions as a node close to the unseen areas
will result in a large amount of invisible pixels. Besides, the
accumulated opacity leads to an over-confident evaluation
of completeness as the splatting from backside geometry
can also result in high accumulated opacity. As illustrated in
Fig. 2, we project the contour pixels of low-visibility areas
into the 3D space, where convex hull [39] is applied to get
the approximated volume regarding the unseen geometry.
We further maintain a set of high-loss samples according to
Eq. 8. The high-loss areas at each frame before densification
will be clustered with temporal propagation to keep track
of the newly observed region.

c) Determination of target views: The viewpoint
selection is then conducted in two stages. The agent will
first select the node with the most invisible areas, taking
both panorama visibility measures and convex hull volumes
into consideration. This strategy forces the agent to reach a
closed space by fast marching the nodes with information
gains, therefore expanding the workspace efficiently. Once
the agent arrives at the target goal position, the panorama
image and the maintained high-loss samples guide the
agent to rotate, as illustrated in Fig. 2, where invisible
and high-loss areas will get observations accordingly. The
proposed method keeps the agent along the Voronoi graph
that compresses potential viewpoints into a finite sparse set
while guaranteeing completeness and safety.

Local plan Global planSubregion partition

Fig. 4: Once the agent gets sufficient observations within a local
region Rl (the green nodes), it selects the next sub-area Rk within
most information gains (the orange nodes) globally for further
exploration.

C. Hierarchical planning with Voronoi Graph

To enhance the overall efficiency of agent exploration
and avoid revisiting past areas, we propose a hierarchical
planning strategy based on Voronoi graphs, which include
subregion partition and local-global goal selection (as
illustrated in Fig. 4).

a) Subregion partition: Building upon the topological
structure of the Voronoi graph, we aim to dynamically
partition the graph into subregions during the exploration
process to ensure fine-grained local granularity with
global guidance. In practice, we adopt the agglomerative
hierarchical clustering method (UPGMA) [40], [41] for
subregion partition, where the pairwise distance takes both
Euclidean and geodesic distance metrics. The hierarchy
allows the flexibility to choose partitions at different levels
and adapts to spatial data. As the agglomeration clustering
considers the average distance between nodes, it produces
balanced clusters with promising efficiency given the sparse
graph structure.

b) Local-global goal selection: The selection of next-
best-subregion follows similar criteria as Sec. III-B(c) that
directs the agent towards nodes to rapidly explore the
surroundings. During the exploration, local areas around
the agent are prioritized for detailed inspection, while the
next-best-subregion with the most information gain will be
selected once local areas are thoroughly explored. The local
planning is conducted by quantifying the aforementioned
incomplete score within the local subregion. The node
with the highest score above a threshold will be selected
iteratively. Once the score of any node within the local
horizon is below the threshold, the agent will execute
global planning by finding the node outside the local
subregion with the highest score. The global score not
only takes the coverage into account, but also considers the
distance cost along with the visited probabilities during past
exploration. The active mapping process is then conducted
to iterate between rigorous mapping locally and coarse
exploration globally to balance the reconstruction accuracy
and efficiency.



D. Implementation details

Given the selected target positions and the target rotations,
the agent will actively explore the unknown environment
and capture new information. We further discuss the details
regarding bootstrapping, panorama rendering, path planning,
and post-processing.

a) Boostrapping: Due to the limited field of view, we
force the agent to look around at the very beginning. The
agent takes discrete actions to execute 360 degrees of yaw
rotation to obtain a complete ambient view. In the simulation,
the agent will additionally take 45 degrees of downward pitch
rotation to ensure a closed ground surface before departure.

b) Panorama rendering: As the Gaussian splatting
technique allows efficient rendering of pinhole images, we
use three virtual cameras with 120 degrees of FOV vertically
and horizontally to get the panoramic images. The size of
each panoramic image is set to be 360 × 120 to allow
convenient selection of the rotation angle.

c) Path planning: Once the target goal position is
determined, the shortest path can then be found through
Dijkstra’s algorithm. The node scoring is implemented as
a weighted sum of the factors, where the maximum score
of each factor is 1. The scores regarding 2D invisible
subareas and convex hulls are normalized by the maximum
area/volume, and the rest are binary values. Nodes with
the same score will be ranked according to their distance
from the agent, where the nearer node will be favored.
We set a fixed distance threshold of 90 for dendrogram
pruning to control the granularity of subregion partitioning.
We also enforce rotation once the agent arrives at multi-
connected nodes in the graph as they are often intersection
points between regions that require careful decision-making.
Experiments indicate the efficacy of this strategy with better
efficiency for thorough exploration.

d) Post-processing: Unlike NeRF-based SLAM
algorithms that sacrifice model capacity for fast convergence
to meet real-time demand, Gaussian-based approaches
maintain a consistent parameter space that allows post-
processing. We further apply adaptive density controls
and additional optimization [7], [8] to refine the online-
constructed map given stored keyframe data (as illustrated
in Fig. 7).

IV. EXPERIMENT

A. Experiment setup

The experiments are conducted on a desktop with a
Intel Core i9-12900K CPU and an NVIDIA RTX 3090
GPU. Following the protocol of [18], we utilize the Habitat
simulator [42] with Gibson [43] and Matterport3D [44]
datasets for qualitative and quantitative evaluation. The agent
collects posed RGB-D data at a resolution of 256×256
and performs discrete actions of MOVE FORWARD by 6.5
cm, TURN LEFT and TURN RIGHT by 10◦, TURN UP and
TURN DOWN by 15◦, and STOP. The agent height is set to
1.25 m with the vertical and horizontal fields of view of 90◦.

Gibson Matterport3D
%↑ cm↓ %↑ cm↓

FBE [15] 68.30 14.42 74.30 9.29
UPEN [45] 63.30 21.09 75.56 9.72
ANM [18] 80.45 7.44 79.36 7.40
ANM-S [14] 92.10 2.83 89.74 4.14
Ours 92.24 2.43 92.48 2.84

TABLE I: Comparison against relevant methods regarding the
completeness of the observed data.
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Fig. 5: The novel view synthesis results of ours compared to the
NeRF-based active mapping [14] on Gibson and MP3D datasets.

B. Comparison to other methods

We first evaluate the exploration coverage across 13
different scenes following the setup of [18] and calculate the
completion ratio (%) and completion (cm) for quantitative
assessment. As shown in Tab. I, the proposed system
outperforms all relevant methods within the limited steps
(1000 for small scenes and 2000 for large-scale scenes). Even
though [14] adopts a similar strategy of topology-guided
exploration, the hierarchical planning strategy balances
between local reconstruction granularity and global scene
coverage.

We also performed a qualitative evaluation regarding
the novel view synthesis. As shown in Fig. 5, the
proposed ActiveSplat takes advantage of Gaussian splatting
technique and achieves significant improvement regarding
the novel view synthesis task compared to the NeRF-based
system [14].

C. Ablation study

To validate the rationale behind our solution, we
conduct ablation studies in different modules to justify the
effectiveness of each strategy for high-fidelity reconstruction.

a) Exploration strategy: We first analyze the effects
of different strategies for thorough exploration. As
demonstrated in Tab. II, the Random baseline indicates
that the Voronoi graph guarantees complete exploration.
Nevertheless, the traversal of all nodes without proper order
is inefficient and overlooks certain areas. This issue remains



66.26% 13.26m 90.07% 26.59m 92.00% 39.84m 93.44% 53.10m

40.45% 11.57m 61.95% 23.14m 82.29% 34.65m 94.63% 46.21m

Path 25% 50% 75% 100%

w
/o

 H
P

O
u

rs

Fig. 6: Ablation of hierarchical planning (scene ID: Quantico): The online reconstruction progress with increased completeness (%)
and path length (m) at different stages (25%, 50%, 75%, 100%). The hierarchical planning strategy results in better completeness and
reduced path length during the exploration.
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Fig. 7: Reconstruction results: The autonomous reconstruction lead to photorealistic rendering and accurate geometry.

for the greedy Position strategy as it only strives to push the
boundaries of working space toward thorough traversal. The
completeness can be improved with the rotation involved.
Finally, the careful treatment of multi-connected nodes and
the hierarchical planning strategy bring further advantages
due to different inspection granularity locally and globally.
As shown in Tab. III and Fig. 6, even though the greedy
strategy leads to rapid ascendance of completeness in
the beginning, coarsely exploring the neighboring areas
results in repetitive trajectories. The proposed hierarchical
planning strategy assures a smaller path length with higher
completeness compared to the greedy baseline after traversal.

b) Coverage evaluation: As mentioned in Sec. III-B(b),
the quantification of visibility in the panoramic view guides
the agent to push the boundary of the working space. To
verify the effectiveness of the integration of both the invisible
mask area and convex hull volume, we evaluate the results

with the following settings. ”Visibility only” guides the agent
to the node with the largest area of invisible regions, and
”Convex hull only” favors the unvisited areas with the largest
3D convex hull. As shown in Tab. IV, merely using the view-
dependent 2D results or the 3D volume quantification does
not best capture the information gain at the corresponding
node. For instance, the “Visibility only” strategy cannot
reflect the actual size of the unvisited regions, while ”Convex
hull only” strategy does not quantify the exact information
gain viewed from the node position. The integration of both
strategies (Ours) as a normalized scoring manner serves as a
complementary solution to take the relative extent of invisible
areas near the Voronoi nodes into consideration, achieving
promising completeness during the active mapping.

c) Post-processing: The unified representation of
Gaussians allows convenient post-processing. We here
compare our results before and after the post-processing



Gibson Matterport3D
%↑ cm↓ %↑ cm↓

Random 84.20 6.13 83.91 5.50
Position 90.41 2.74 89.54 3.67
Viewpoint 91.76 2.30 92.38 2.85
Ours 92.24 2.43 92.48 2.84

TABLE II: Ablation of exploration strategy: (1) ”Random”
denotes the random selection of unvisited Voronoi nodes; (2)
”Position” denotes exploration with only node selection but
ignoring the target rotations; (3) ”Viewpoint” denotes the decoupled
selection of both view positions and rotations; (4) ”Ours”
incorporates multi-connected regions and hierarchical planning
during the navigation. Different exploration strategies lead to
diverse behaviors for efficiency-accuracy tradeoffs.

Gibson Matterport3D
w/o HP Ours w/o HP Ours

Path Ratio % ↑ cm ↓ % ↑ cm ↓ % ↑ cm ↓ % ↑ cm ↓
25% 66.58 15.95 66.40 16.24 76.66 7.75 71.80 9.57
50% 75.94 11.00 78.82 8.60 85.68 4.63 80.85 6.29
75% 85.38 5.31 82.31 7.35 88.80 3.81 87.60 4.28
100% 92.96 1.98 92.24 2.43 91.39 3.01 92.48 2.84
150% 94.24 1.55 95.24 1.17 93.33 2.53 94.11 2.40

P.L.(m ↓) 41.56 37.12 31.12 27.41

TABLE III: Ablation of hierarchical planning: Hierarchical
Planning (HP) enables the agent to achieve higher reconstruction
completeness with shorter path lengths (P.L.).

using 3DGS [7] and 2DGS [8]. 50 captured frames are
selected uniformly as the train split for each scene, and
randomly sample 50 images given randomly sampled camera
poses within the free space are taken as the test split. As
shown in Tab. V, further refinement can drastically enhance
the reconstruction quality in terms of both geometry and
appearance if both RGB and depth observations are utilized
during the optimization. The online feedback allows active
data captures for complete and high-fidelity reconstruction.
It can be noted that the two-dimensional flattened Gaussian
parameter representation of 2DGS [8] along with the
geometric regularization terms show better results in the test
split, while 3DGS [7] indicates better overfitting in the train
split. Besides, depth image not only leads to better geometry
(lower Depth L1) in both train and test splits, but also
enhances the generalization of the map (better quality in the
test split). Refinement without depth loss may result in more
realistic view synthesis results (severe overfitting), but the
geometry may deteriorate due to ambiguities in textureless
areas.

V. CONCLUSION

In this paper, we introduce ActiveSplat, an active
mapping system for high-fidelity reconstruction of indoor
scenes. Benefiting from the accurate dense prediction
of the differentiable rendering and the working space
abstraction through Voronoi graph extraction, the system
achieves promising tradeoffs between exploration efficiency
and completeness. Detailed experimental results validate
the efficacy of the proposed system. The ability to

Gibson Matterport3D
%↑ cm↓ %↑ cm↓

Visibility only 90.19 3.09 91.40 3.15
Convex hull only 91.09 2.86 91.50 2.98
Ours 92.24 2.43 92.48 2.84

TABLE IV: Ablation of coverage evaluation: Merely 2D or 3D
way of quantifying invisible areas does not best guide the agent.

Depth loss Split Depth L1↓ PSNR↑ SSIM↑ LPIPS↓

Online True
Train 1.91 25.28 0.83 0.22
Test 9.01 21.72 0.76 0.29

Refined
with
3DGS

False
Train 4.49 39.10 0.98 0.03
Test 11.2 26.27 0.86 0.19

True
Train 0.77 38.90 0.99 0.03
Test 7.81 26.87 0.88 0.17

Refined
with
2DGS

False
Train 3.94 38.84 0.99 0.04
Test 10.10 27.13 0.88 0.18

True
Train 0.80 38.90 0.99 0.04
Test 7.56 27.58 0.88 0.17

TABLE V: Ablation of post-processing: The reconstruction results
before and after post-processing.

explore in unknown indoor environments with high-fidelity
reconstruction opens the door for further research on robotic
autonomy and active perception, which can be further
extended to complex tasks such as lifelong navigation and
mobile manipulation.
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